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An Incomplete and Missing Graph
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Zhiping Cai , Member, IEEE, and Jieren Cheng

Abstract— With the development of various applications, such
as recommendation systems and social network analysis, graph
data have been ubiquitous in the real world. However, graphs
usually suffer from being absent during data collection due to
copyright restrictions or privacy-protecting policies. The graph
absence could be roughly grouped into attribute-incomplete and
attribute-missing cases. Specifically, attribute-incomplete indi-
cates that a portion of the attribute vectors of all nodes are
incomplete, while attribute-missing indicates that all attribute
vectors of partial nodes are missing. Although various graph
imputation methods have been proposed, none of them is
custom-designed for a common situation where both types of
graph absence exist simultaneously. To fill this gap, we develop
a novel graph imputation network termed revisiting initial-
izing then refining (RITR), where both attribute-incomplete
and attribute-missing samples are completed under the guid-
ance of a novel initializing-then-refining imputation criterion.
Specifically, to complete attribute-incomplete samples, we first
initialize the incomplete attributes using Gaussian noise before
network learning, and then introduce a structure-attribute con-
sistency constraint to refine incomplete values by approximating
a structure-attribute correlation matrix to a high-order struc-
ture matrix. To complete attribute-missing samples, we first
adopt structure embeddings of attribute-missing samples as
the embedding initialization, and then refine these initial
values by adaptively aggregating the reliable information of
attribute-incomplete samples according to a dynamic affinity
structure. To the best of our knowledge, this newly designed
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method is the first end-to-end unsupervised framework dedicated
to handling hybrid-absent graphs. Extensive experiments on six
datasets have verified that our methods consistently outperform
the existing state-of-the-art competitors. Our source code is
available at https://github.com/WxTu/RITR.

Index Terms— Feature completion, graph neural net-
work (GNN), hybrid-absent data, incomplete multiview learning.

NOMENCLATURE

X ∈ RN×D Original attribute matrix.
XI

∈ RN I
×D Incomplete attribute matrix.

N ∈ RN I
×D Gaussian noise matrix.

X̃I
∈ RN I

×D Corrupted incomplete attribute matrix.
A ∈ RN×N Original adjacency matrix.
Ã ∈ RN×N Normalized adjacency matrix.
ÃI

∈ RN I
×N I

Normalized adjacency matrix of GSub.
I ∈ RN×N Identity matrix.
C ∈ RN I

×N I
Structure-attribute correlation matrix.

ÃI (o)
∈ RN I

×N I
o-order normalized adjacency matrix
of GSub.

HI
A ∈ RN I

×d Attribute embeddings of incomplete
samples.

HS ∈ RN×d Structure embeddings.
HM

S ∈ RN M
×d Structure embeddings of missing samples.

HI ∈ RN×d Initially imputed embeddings.
R ∈ RN×N Affinity structure.
H ∈ RN×d Imputed embeddings.
HM

∈ RN M
×d Imputed embeddings of missing samples.

H̃ ∈ RN×d Sample-recomposed embeddings.
S ∈ RN×N Normalized self-correlated matrix.
M ∈ RN I

×D Elementwise indicator matrix.
X̂ ∈ RN×D Rebuilt attribute matrix.
X̂I

∈ RN I
×D Rebuilt attribute matrix of incomplete

samples.
Â ∈ RN×N Rebuilt adjacency matrix.

I. INTRODUCTION

GRAPHS, which model and represent the complicated
relationships among real-world objects, are ubiquitous

in practical scenarios, including citation graphs, social graphs,
protein graphs, and molecule graphs. To analyze the graph
data, graph machine learning attempts to transform an original
graph into low-dimensional representations by preserving node
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Fig. 1. Different types of absent graphs. (a) Attribute-incomplete graph:
particular attributes of all the samples are absent. (b) Attribute-missing graph:
all the attributes of specific nodes are absent. (c) Hybrid-absent graph: both
circumstances (a) and (b) exist simultaneously within a common graph. As one
can easily see, the last category is the most challenging. However, it is still
underexplored in previous literature. We make the first attempt to solve it by
proposing a novel method called RITR.

attributes and graph structure simultaneously [1], [2], [3].
In recent years, with the help of graph neural net-
works (GNNs), graph machine learning has become an
increasingly powerful artificial intelligence technique. It has
achieved significant success in diverse real-world applications,
such as anomalous citation detection [4], few-shot learning [5],
and knowledge graphs [6], [7].

The key prerequisite for the impressive performance of
the existing graph machine learning methods lies in the
assumption that all the samples within a graph are available
and complete. However, this assumption may not always hold
in practice since it is hard to collect all the information
from graph data. The reasons behind this include but are not
limited to privacy-protecting policies, copyright restrictions,
and simply not enough information. For example, in a co-
purchase graph, consumers tend to selectively (or entirely
not) provide their feedback for specific items due to privacy
concerns. In a citation graph, some papers are inaccessible
due to copyright protection. All these circumstances could
easily trigger sparsity and data-absent problems that adversely
affect the learned representations. According to the type of
node attribute absence, the absent graphs can be roughly
divided into two categories: 1) the attribute-incomplete graph
where only a portion of attributes of all the nodes are absent
and 2) the attribute-missing graph where all the attributes
of specific nodes are absent. Fig. 1 illustrates the situations
of attribute absence. Among them, Fig. 1(a) corresponds
to an attribute-incomplete graph, Fig. 1(b) corresponds to
an attribute-missing graph, and Fig. 1(c) corresponds to a
hybrid-absent graph where both the attribute-incomplete sam-
ples and attribute-missing samples exist in the same graph.
The above cases make valuable information invisible and pose
significant challenges to the existing graph machine learning
methods for graph analysis.

To tackle the attribute-incomplete learning problem, many
efforts have been devoted to developing various imputa-
tion strategies such as matrix completion [8], [9], gen-
erative adversarial network (GAN) [10], Gaussian mixture
model (GMM) [11], and other advanced ones [12], [13].
To impute incomplete attributes, these methods integrate a
standard GNN-based framework and data imputation tech-
niques to conduct the sample embedding. Although significant
progress has been made in solving the attribute-incomplete
learning problem, the performance of these methods degrades

drastically when they encounter extremely absent data
(e.g., attribute-missing graphs). To solve this issue, a recent
advanced method termed SAT [14] first introduces an unsuper-
vised graph imputation framework to handle attribute-missing
graphs under the guidance of a shared-latent space assumption.
Although achieving encouraging success, SAT suffers from the
following limitations when conducting the data imputation.

1) Two-Source Information Isolation: SAT isolates the
learning processes of embeddings of observed node
attributes and the complete graph structure. This pre-
vents the trustworthy visible information from being
sufficiently used, which could cause the learned repre-
sentations to be biased and increase the risk of inaccurate
data imputation.

2) Strict Prior Assumption: SAT forces two-source latent
variables to align with an in-discriminative noise matrix
obeying normal distribution. While in reality, the prede-
fined normal distribution would not ideally conform to
the complex graphs. As a result, the negotiation between
attribute and structure information tends to get overly
rigid, resulting in less discriminative representations.
This could adversely affect the quality of the rebuilt
attribute matrix of all the samples, especially those
without attributes.

To forbid the adverse effect of inaccurate simple initial-
ization and the limitation of rigid distribution assumption,
we propose an initializing then refining (ITR) method [15].
While there is potential for effectively tackling the attribute-
missing problem, we have observed that when ITR processes
hybrid-absent graphs, attribute-incomplete samples would
largely undermine the quality of generated attribute-missing
features. This is primarily due to the diffusion of inaccurate
imputed information. To our knowledge, hybrid-absent graph
machine learning has not been studied in the existing graph
literature, which is a universal yet challenging problem in
various practical applications. To fill this gap, we revisit ITR
and further improve it by designing a variant, termed revisiting
ITR (RITR). In this newly proposed RITR, we complete both
the attribute-incomplete and attribute-missing samples under
the guidance of the initializing-then-refining imputation crite-
rion. To impute incomplete attributes, we elaborately design
a sample-denoising then consistency-preserving (STC) mech-
anism. As illustrated in Fig. 2, the feature completion process
within this mechanism mainly includes step 1 to step 3.
First, we use a denoising learning approach that combines
the attribute and structure information of attribute-incomplete
samples to learn sample embeddings. Second, we consider
all the nodes in the graph and focus on learning sample
embeddings solely based on the structure information. Finally,
we introduce a structure-attribute consistency constraint to
refine these incomplete latent variables by approximating a
structure-attribute correlation matrix to a high-order structure
matrix. This operation aims to ensure the representation quality
of nodes with incomplete attributes, so as to provide a feasible
initialization for nodes with missing attributes in the subse-
quent steps. To impute missing attributes, we design another
data imputation mechanism termed ITR. Specifically, we first
take the structure embeddings of attribute-missing samples

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:57:55 UTC from IEEE Xplore.  Restrictions apply. 



3246 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

Fig. 2. Architecture of the RITR framework. To impute the incomplete values, we first initialize the original incomplete attributes as Gaussian noise
for denoising learning (i.e., step 1), and then introduce a structure-attribute consistency constraint to refine the incomplete values by approximating a
structure-attribute correlation matrix to a high-order structure matrix (i.e., step 3). To impute the missing values, we first adopt the structure embeddings
of the attribute-missing samples as the embedding initialization (i.e., step 4), and then adaptively refine these initial values by aggregating the reliable and
informative information of the attribute-incomplete samples according to the dynamic affinity structure (i.e., step 5).

as initial imputed variables, and then refine them with an
adaptively updated affinity structure for embedding refinement.
The above operations correspond to steps 4 and 5 in Fig. 2.

This work is a substantially extended version of our original
conference paper [15]. Compared with its previous version,
it has the following significant improvements.

1) Novel Research Problem: To the best of our knowl-
edge, hybrid-absent graph machine learning is a rarely
explored research field, yet it is a real-world demand
from various applications. Accordingly, we develop a
novel graph machine learning framework called RITR,
which is the first incomplete and missing graph impu-
tation network to solve the corresponding learning
problem.

2) Newly Proposed Mechanism: To complete attribute-
incomplete samples, we propose a new feature com-
pletion mechanism termed STC by following the
initializing-then-refining imputation criterion. This oper-
ation encourages the model to generate more discrimi-
native features for attribute-incomplete samples, which
serves the subsequent attribute-missing imputation task
better.

3) More Experimental Results and Analyses: Besides more
discussions and extensions, comprehensive experiments
on six benchmark datasets have been conducted to
verify the effectiveness and superiority of our proposed
methods in different absent graph situations.

The remainder of this article is organized as follows.
Section II reviews related work in terms of unsupervised
graph machine learning and graph machine learning on
absent graphs. Section III presents the notations, definitions,
model design, training objectives, and complexity analysis.
Section IV presents the experimental results with the corre-
sponding discussions. Section V draws a final conclusion.

II. RELATED WORK

A. Unsupervised Graph Machine Learning

Early solutions to unsupervised graph machine learning
mainly focus on random-walk-based methods [16], [17], which

first generate the random walk sequences over the network
structure properties and then use a Skip-Gram model to learn
graph representations. However, these methods heavily rely on
structure information and overlook other available properties
(e.g., attribute information) in the graph. More recently, since
the powerful neighborhood aggregation capacity of GNNs,
many efforts have been made to design GNN-based meth-
ods [18], [19], [20]. As one of the most representatives,
generative or predictive learning-oriented methods strive to
harness the wealth of information embedded in data using
well-established techniques, such as autoencoder learning [21],
[22], [23], [24], [25] and adversarial learning [26], [27].
Another line pays attention to graph contrastive learning,
which aims to maximize the agreement of two jointly sampled
positive pairs [28], [29], [30], [31], [32], [33]. One underlying
assumption commonly adopted by these methods is that the
attributes of all the nodes are complete. While in real-world
scenarios, they may suffer from significant performance degra-
dation when encountering absent graphs.

B. Graph Machine Learning on Absent Graphs

According to the type of absent graphs, the existing absent
graph machine learning methods could be roughly grouped
into the following three categories.

1) Attribute-Incomplete Graph Machine Learning: In the
attribute-incomplete circumstance, some methods propose
to leverage data imputation-oriented techniques to restore
the incomplete information, such as matrix completion [8],
GAN [34], and GMM [35]. For instance, NMTR [36] and
GRAPE [37], two typical matrix completion methods, first
take the user–item rating matrix, users (or items), and the
observed ratings as a bipartite graph, sample attributes, and
connected relationships, respectively. These methods then use
a GNN to predict the probabilities, which are considered
as imputed values, for the missing connected relationships.
Similarly, given a created bipartite graph, GRAPE [37] first
converts a data imputation process into a linkage prediction
learning task, and then uses a GNN to solve it. Recent efforts
such as NMTR [36] and IGMC [9] follow the same paradigm
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as previous matrix completion methods to conduct the data
imputation and sample embedding in a transductive or induc-
tive learning manner. In addition, GINN [10] first initializes
the incomplete values by a binary mask matrix before network
training, and then learns a GNN with an adversarial learning
mechanism to complete the absent information. GCNMF [11]
uses a GMM to estimate the incomplete features based on
the available information. Meanwhile, it jointly optimizes
the GMM and GNN in a united framework. More recently,
T2-GNN [38] is a general teacher–student graph learning
framework to restore both incomplete node features and graph
structure through self-distillation.

2) Attribute-Missing Graph Machine Learning: Compared
with the attribute-incomplete circumstance, handling the graph
data with a majority of samples having no attributes poses
more challenges in learning high-quality representations. This
topic has attracted great attention from graph machine learning
researchers recently. For example, HGNN-AC [39] first uses
heterogeneous information networks (HINs) to learn repre-
sentations and subsequently uses the topological relationship
between nodes as guidance to implement feature completion
for attribute-missing samples via an attention mechanism.
HGCA [40] uses the contrastive learning technique to unify the
processes of feature completion and representation learning,
and thereafter, conduct a fine-grained attribute completion by
extracting the semantic relationships among different types
of samples. Besides the attribute-missing heterogeneous graph
machine learning, an advanced method called SAT [14] makes
the first attempt to solve the attribute-missing learning problem
over the homogeneous graphs. By unifying the data imputation
and network learning processes into a single optimization
procedure, SAT learns two-source information embedding
matrices in a decoupled manner and then aligns them with
a noise matrix sampled from a normal distribution for data
completion. Another recent work, ITR [15] introduces an
initializing-then-refining mechanism, encouraging the network
to fully use the trustworthy visible information to adaptively
conduct the sample embedding for missing attribute impu-
tation. FP [41] diffuses the features from observed nodes
to neighbors whose features are incomplete based on the
heat diffusion function. PSGNN [42] studies the usage of
artificial positional node features and structural node features
to help GNNs learn useful information from nonattributed
graphs. More recently, SVGA [43] and Amer [44] develop an
autoencoder-style framework to estimate missing node features
via structured variational inference and adversarial learning
techniques, respectively.

3) Hybrid-Absent Graph Machine Learning: As afore-
mentioned, attribute-incomplete and attribute-missing graph
machine learning problems have been intensively studied in
recent years. Despite their significant progress, in nature, these
methods are not capable of effectively handling hybrid-absent
graphs. In this circumstance, especially for the unsupervised
scenario, the performance of the existing attribute-incomplete
and attribute-missing methods could drop drastically since they
suffer from at least one of the following limitations: 1) heavily
relying on annotated graph data; 2) lacking a specialized fea-
ture completion mechanism for handling attribute-missing or

attribute-incomplete samples; 3) disconnecting the processes
of data imputation and network optimization; 4) isolating
the learning processes of structure and attribute embeddings;
and 5) imposing too strict a distribution assumption on
the latent variables. Although our recently proposed ITR
could address most of the above problems and exhibits
powerful learning capacity in the attribute-missing situation,
it is still a great challenge to recover incomplete and miss-
ing values with limited available information simultaneously.
To achieve this goal, we study a new important research
problem termed hybrid-absent graph machine learning and
design an ITR variant called RITR. It first leverages the
intimate structure-attribute relationship to guide the imputation
of incomplete attributes and then uses the most trustworthy
visible information to implement the missing attribute comple-
tion. To the best of our knowledge, none of the above literature
considers the hybrid-absent graph machine learning problem,
and RITR is the first work dedicated to this field.

III. METHOD

A. Notations and Definitions

We denote G = {V, E} as a given undirected graph that
contains N samples with C categories, where V and E indicate
the node set and edge set, respectively. Generally, the topology
of a graph G can be characterized by its adjacency matrix
A ∈ RN×N and the content of graph G can be represented
by its attribute matrix X ∈ RN×D , where D refers to the
sample dimension. The main notations and their explanations
are summarized in Nomenclature.

Definition 1 (Hybrid-Absent Graph): We denote a hybrid-
absent graph G̃ = {V I ,VM , E}, where partial attributes of
some samples are unavailable (i.e., the attribute-incomplete
sample set V I ) and all the attributes of other samples are
entirely missing (i.e., the attribute-missing sample set VM ).
N I

= |V I
| and N I

= |VM
| refer to the number of

attribute-incomplete samples and attribute-missing samples,
respectively. Accordingly, V = V I

∪ VM , V I
∩ VM

= ∅, and
N = N I

+ N M . Note that the structure information (i.e., E)
of G̃ is complete.

Definition 2 (Learning Task): In this work, we mainly
focus on addressing the hybrid-absent graph machine learn-
ing problem on graphs without label annotation. Our
autoencoder-style framework works for learning two graph
encoding functions E A(·) and Es(·) to impute invisible latent
variables. Then, a graph decoding function D(·) will recover
the attribute-missing and attribute-incomplete samples based
on the imputed hidden features. The recovered attributes can
be saved and used for profiling and node classification tasks.

B. Overview

In the hybrid-absent graph scenarios, a good graph impu-
tation model should fully leverage the available visible
information to perform data completion. To achieve this
goal, we design an STC mechanism and an ITR mecha-
nism, which are intended to solve the attribute-incomplete
and attribute-missing learning problems, respectively. As illus-
trated in Fig. 2, in the STC mechanism, we first generate
a corrupted subgraph by randomly adding Gaussian noise
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information to incomplete attributes as initial values. Then, the
corrupted subgraph and the structural graph are transferred into
two graph encoders to learn low-dimensional representations.
In the information extraction phase, a structure-attribute con-
sistency constraint allows the intermediate structure-attribute
representations of attribute-incomplete samples to negotiate
with each other to refine incomplete attributes. After that,
the ITR mechanism uses the structure embeddings of the
attribute-missing samples as the embedding initialization, and
then adaptively refines these initial values by aggregating the
reliable information of attribute-incomplete samples according
to an affinity structure. By combining these two mechanisms,
we expect that the proposed RITR can effectively improve the
quality of data completion for hybrid-absent graphs. Finally,
RITR conducts the graph reconstruction based on the graph
embedding by jointly minimizing three objectives.

C. Sample-Denoising Then Consistency-Preserving

The critical technique extension of RITR against its confer-
ence version is the STC mechanism. This mechanism focuses
on ensuring high-quality representations for nodes with incom-
plete attributes, which in turn offers a feasible initialization to
those nodes with missing attributes in the subsequent steps.

Since the network could not be optimized over unknown
values, we use a sample-denoising learning approach to ease
the network training and facilitate the robustness of the learned
attribute-incomplete features. Specifically, we first randomly
generate a Gaussian noise matrix N ∈ RN I

×D with iterations,
and then assign it to the incomplete attribute matrix XI

∈

RN I
×D as initial values. The resultant matrix is denoted as a

corrupted incomplete attribute matrix X̃I
∈ RN I

×D . Although
the sample-denoising scheme has been previously explored
and proved to be powerful [45], directly applying it to the
restoration of incomplete attributes is less comprehensive
since partial attributes are invisible. Inspired by the principle
that attribute and structure information possess consistent and
complementary properties of a typical graph [46], we leverage
the intimate relationship between structure-attribute embed-
dings to enhance the initial imputation quality of incomplete
attributes. To be specific, we first use two graph convolution-
network-based encoders denoted as E A(·) and ES(·) to
extract the latent features of attribute-incomplete samples
and graph structure, respectively. Formally, E A(·) accepts a
subgraph Gsub with X̃I and its normalized adjacency matrix
ÃI

∈ RN I
×N I

as input and the lth representations of
attribute-incomplete samples can be formulated as below

HI (l)
A = σ

(
ÃI HI (l−1)

A 2(l)
)

(1)

where 2(l) is the parameter matrix of E A(·) in the lth layer,
and σ(·) indicates a nonlinear activation function. Similarly,
ES(·) receives a structure graph GS with an identity matrix
I ∈ RN×N and a normalized adjacency matrix Ã ∈ RN×N , and
the lth representations of the graph structure can be obtained
by calculating

H(l)
S = σ

(
ÃH(l−1)

S 9(l)
)

(2)

where 9(l) is the parameter matrix of ES(·) in the lth layer.
After that, we encourage each attribute-incomplete sample

Algorithm 1 Learning Procedure of the STC Mechanism
Require: Subgraph GSub

= {XI , ÃI
}; structure graph GS

= {I, Ã};
o-order normalized adjacency matrix of subgraph ÃI (o); maxi-
mum iterations T; hyperparameter β.

Ensure: Attribute embeddings of incomplete samples HI
A and struc-

ture embeddings HS .
1: for t = 1 to T do
2: Generate N and assign it to XI ;
3: Use E A(·) to learn HI

A by (1);
4: Use ES(·) to learn HS by (2);
5: Calculate C by (4)
6: Optimize the model by minimizing (3);
7: end for
8: return HI

A and HS

to be close to its counterpart and o-order neighbors across
structure-attribute modalities, which can be formulated as

LC =
1

N I

N I∑
i

(Ci i − 1)2

︸ ︷︷ ︸
Self-loop consistency

+
1

N I (N I −1)

N I∑
i

N I∑
j ̸=i

(
Ci j −ÃI (o)

i j

)2

︸ ︷︷ ︸
High-order structural consistency

(3)

C =

HI (1)
A p

(
H(1)

S

)⊤∥∥∥HI (1)
A

∥∥∥∥∥∥p
(

H(1)
S

)∥∥∥ (4)

where C ∈ RN I
×N I

and ÃI (o)
∈ RN I

×N I
denote a

structure-attribute correlation matrix and an o-order normal-
ized adjacency matrix, respectively. In addition, HI (1)

A and H(1)
S

indicate the embeddings of attribute-incomplete samples and
graph structure in the first layer, respectively. p(·) is an
embedding pick-out function [14].

As seen in (3), the first term aims to ensure that the
diagonal elements of the structure-attribute correlation matrix
are close to a specific value, thereby promoting consistency in
the structure-attribute embeddings of each attribute-incomplete
sample. Moreover, the second term encourages each sample
to be closer to its o-order neighbors than nonneighbors across
both structure and attribute modalities. This objective aims to
leverage diverse complete structure properties to facilitate the
feature completion of attribute-incomplete samples. By doing
this, both sample denoising and structure-attribute consistency
constraint are seamlessly integrated to make the learned repre-
sentations of attribute-incomplete samples robust and invariant
to data perturbations (e.g., the noise and incompleteness of the
graph). The overall pipeline of training the proposed STC is
summarized in Algorithm 1.

D. Initializing Then Refining

The ITR mechanism is designed to fully use the trustworthy
visible structure and attribute information produced by the
STC mechanism for initializing and refining the missing
values. It consists of the following two steps.

1) Imputation Initialization: The widely adopted measure
for missing data initialization are the traditional imputation
techniques, such as zero value filling and mean value fill-
ing. Nevertheless, in the attribute-missing circumstance, these
filling methods could incorporate amounts of irrelevant noise
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TABLE I
PERFORMANCE COMPARISON. BOTH ATTRIBUTE-INCOMPLETE AND
ATTRIBUTE-MISSING RATIOS ARE SET TO 60%. OURS-Z, OURS-S,
AND OURS-S-A ARE METHODS WHERE WE IMPUTE THE LATENT

VARIABLES OF ATTRIBUTE-MISSING SAMPLES WITH ZERO
VALUES, THE STRUCTURE EMBEDDINGS MERELY, AND THE

STRUCTURE-ATTRIBUTE EMBEDDINGS, RESPECTIVELY.
↑ DENOTES THE PERFORMANCE IMPROVEMENT

OF OURS-S-A AGAINST OURS-S

that will diffuse through the network, causing semantically
biased representations. To alleviate this issue, it is intuitive to
leverage the structure embeddings as the embedding initial-
ization for latent variables of attribute-missing samples. The
reason for that is twofold. First, the attribute embedding and
the structure embedding describe different aspects of a node,
providing consistent and complementary information in these
two modalities [46]. Second, this initialization approach is
reliable since the structure information of the original graph
is complete.

To this end, we first pick out the structure embeddings of
attribute-missing samples HM

S ∈ RN M
×d from HS , and then

use a Concat function C(·) to integrate HM
S with HI

A, where d
refers to the embedding dimension. It is worth noting that
the information concatenation to construct HI ∈ RN×d is
not the classic channelwise or rowwise concatenation. In this
operation, the latent variables of attribute-incomplete samples
are filled with HI

A and the latent variables of attribute-missing
samples are filled with HM

S

HI = C
(
HI

A, HM
S

)
(5)

where HI indicates the initially imputed embeddings. In our
concatenation settings, the location of each sample remains
unchanged within the original graph.

2) Imputation Refinement: As known, the trustworthiness
degrees of attribute and structure information exhibit differ-
ences to some extent. Making full use of the trustworthy
visible structure and attribute information to complete the
missing values could boost the imputation quality of attribute-
missing samples. To illustrate whether our argument holds,
we make a comparison among three methods and discuss
the performance on Cora and Citeseer. Here, we set both
the attribute-incomplete and attribute-missing ratios as 60%.
As seen in Table I, we can observe that: 1) Ours-S performs
better than Ours-Z, verifying that the structure embeddings HM

S
can provide an effective embedding initialization and 2) the
trustworthy attributes can provide more discriminative infor-
mation to assist in the refinement of initial imputation. In our
design, we leverage available attribute properties HI

A to refine
the initially imputed variables HM

S via a dynamic affinity
structure R ∈ RN×N , which can be written as a graph-
convolution-like formulation

H = RHI (6)

where H ∈ RN×d indicates the imputed embeddings, and we
initialize the affinity structure R as Ã.

According to (6), the attribute-missing imputation could be
refined from the following two aspects. On one hand, it is obvi-
ous that the noise information in HM

S can be transferred into
the well-learned attribute embeddings of attribute-incomplete
samples. This would undermine the representation quality and
the reconstruction accuracy of available information, which in
turn negatively affects the subsequent data imputation tasks
and even distorts the original graph. To tackle this problem,
we implement an information recomposing (IR) scheme to
decrease the adverse effect of noise information passing from
the embeddings of attribute-missing samples. First, we pick
out the latent variables of attribute-missing samples HM

∈

RN M
×d from H, and next recompose them with HI

A using a
Concat function C(·)

H̃ = C
(
HI

A, HM) (7)

where H̃ ∈ RN×d indicates the sample-recomposed embed-
dings. The IR scheme replaces the adjusted embeddings of
attribute-incomplete samples with more reliable HI

A. Mean-
while, as illustrated in Fig. 2, we fix the embeddings of
attribute-incomplete samples as HI

A in the final step. This pro-
vides the most trustworthy information on attribute-incomplete
samples for subsequent missing attribute imputation.

On the other hand, we argue that the initial affinity matrix R
(i.e., Ã) is not the ground truth. The limitations within this
matrix are twofold.

1) Noisy Connections: Besides inner connections within
clusters, inappropriate connections could exist between
clusters in the matrix.

2) Missing Connections: In Ã, only the first-order con-
nections are preserved, and the high-order relevant
connections could be missing.

Both would cause inaccurate imputation and reconstruction
of missing attributes. To overcome these issues, we seek to
refine R by emphasizing the dependable connections while
weakening the unreliable ones. To this end, we propose
an affinity structure updating (ASU) scheme to optimize R
with iterations. Specifically, we first calculate a normalized
self-correlated matrix S ∈ RN×N according to H̃ as below

S jk = N
(

h̃ j h̃⊤

k∥∥̃h j
∥∥∥∥̃hk

∥∥
)

∀ j, k ∈ [1, N ] (8)

where N (·) indicates a structural normalization function. h̃ j

and h̃k indicate the embeddings of node v j and node vk ,
respectively. Then we optimize the affinity structure R every t
iterations via (9) and leverage it as guidance for the subsequent
missing attribute imputation

R = γ Ã + (1 − γ )S (9)

where γ is a balanced hyperparameter and is initialized
as 0.5. With the ASU scheme, the network is enabled to
construct the embeddings of attribute-missing samples with
not only the first-order but also the trustworthy high-order
connections within the graph structure. As the embeddings
of attribute-incomplete samples become more reliable and
the embeddings of attribute-missing samples become more
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TABLE II
COMPARISON OF THE COMPLEXITY ANALYSIS AMONG SAT [14], ITR [15], AND THE PROPOSED RITR

Algorithm 2 Learning Procedure of the ITR Mechanism
Require: Attribute embeddings of incomplete samples HI

A; structure
embeddings HS ; maximum iterations T; update interval U; ele-
mentwise indicator matrix M; hyperparameters γ and α.

Ensure: Rebuilt attribute matrix X̂ and adjacency matrix Â.
1: for t = 1 to T do
2: Obtain HM

S from HS in accordance with indices;
3: Combine HI

A with HM
S for initial imputation by (5);

4: Conduct the imputation refinement using R by (6);
5: Recompose the latent variables to obtain H̃ by (7);
6: Calculate S over the resultant H̃ by (8);
7: if t%U == 0 then
8: Update R to refine H by (9) and (6);
9: end if

10: Use D(·) to decode H̃ and output X̂ by (10);
11: Use a simple inner decoder to rebuild Â;
12: Optimize the model by minimizing (11) and (12);
13: end for
14: return X̂ and Â

informative, the learned representations can exhibit enhanced
discriminative and robust characteristics. The overall training
pipeline for the proposed ITR is summarized in Algorithm 2.

E. Training Objectives and Complexity Analysis

1) Training Objectives: After obtaining H̃, we feed it
with Ã into a graph decoder D(·) to rebuilt the attributes of
attribute-incomplete and attribute-missing samples

H̃(l)
= σ

(
ÃH̃(l−1)8(l)) (10)

where 8(l) indicates the parameter matrix of D(·) in the lth
layer. H̃(0) and H̃(2) denote the sample-recomposed embed-
dings H̃ and the rebuilt attribute matrix X̂ ∈ RN×D ,
respectively. The joint loss function of RITR includes three
parts, which can be written as

LA =
1

2N I

wwM ⊙ (XI
− X̂I )

ww2
F (11)

LS =
1

N 2

N∑
i=1

N∑
j=1

BCE
(
Ãi j Âi j

)
(12)

L = αLA + LS + βLC . (13)

In (11), LA refers to the mean square error (MSE) of
attribute-incomplete samples between X and X̂. M ∈ RN I

×D

is an elementwise indicator matrix where Mi j = 1 if XI
i j is a

real value, otherwise XI
i j is a null value (i.e., an incomplete

attribute). In (12), LS refers to the binary cross-entropy (BCE)
between Ã and the rebuilt adjacency matrix Â ∈ RN×N ,
where Â = σ(HSH̃⊤), and σ(·) is a Sigmoid activation
function. α and β are two balanced hyperparameters. The
applied optimization objectives are similar to the existing
attribute-missing graph machine learning methods [14], [15].

However, the major differences between current methods and
RITR could be summarized in the following three parts:
1) more naturally handling hybrid-absent graphs in an unsu-
pervised circumstance; 2) more comprehensive that seamlessly
unifies the representation learning and data imputation pro-
cesses of attribute-incomplete and attribute-missing samples
into a common optimization framework; and 3) more dis-
criminative that enables the structure-attribute information to
sufficiently negotiate with each other for feature completion
by performing STC and ITR mechanisms.

2) Complexity Analysis: The time complexity of the pro-
posed RITR could be discussed from the following two
aspects: the graph autoencoder framework and the loss func-
tion computation. For two GCN-based graph encoders, the
complexities of E A(·) and ES(·) are O(Nd2(L −1)+Nd DA +

|E |d L) and O(Nd2(L − 1) + Nd DS + |E |d L), where N ,
L , and |E | are the number of nodes, encoder layers, and
edges, respectively. DA, DS , and d are the dimensions of raw
attribute features, raw structure features, and latent features,
respectively. For the graph decoder, the complexity of D(·)

is O(Nd2(L − 1) + Nd DA + |E |d(L − 1) + |E |DA). For the
loss function computation, we follow SAT [14] and use the
MSE and BCE loss functions to reconstruct node attributes
and graph structure, respectively. The time complexities of LA

and LS are O(nDA) and O(N 2), respectively. The time com-
plexity of the structure-attribute consistency loss function LC

is O(n2), where n = N − Nr , in which r is the ratio of
attribute-missing samples. Considering the attribute-missing
problem is universal in real-world scenarios (i.e., r can be
assigned a large value), and n2 can be relatively small, thus
the computation overhead in this context is deemed acceptable.
The overall time complexity of RITR for each training iteration
is O(Nd(DA + DS + d L) + |E |(d L + DA) + N 2

+ n(n +

DA)) ≈ O(N 2). To ensure a fair comparison, we perform a
complexity comparison among three attribute-missing graph
machine learning methods. As shown in Table II, we observe
that RITR does not introduce any additional computational
complexity compared with its competitors.

IV. EXPERIMENTS

A. Experimental Setup

1) Benchmark Datasets: We implement experiments to
evaluate two proposed methods (i.e., ITR and RITR), on six
benchmark datasets, including Cora, Citeseer, Amazon Com-
puter (Amac), Amazon Photo (Amap), Ogbn-arxiv (Ogbn-A),
and Ogbn-products (Ogbn-Ps for abbreviation). We summarize
the detailed dataset information in Table III.

1) Cora, Citeseer, and Ogbn-A are three popular cita-
tion network datasets. Specially, nodes mean scientific
publications, and edges mean citation relationships.
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TABLE III
SUMMARY OF DATASETS

Each node has a predefined feature with the correspond-
ing dimensions.

2) Amap, Amac, and Ogbn-Ps are segments of the Ama-
zon co-purchase network, where nodes represent goods,
edges indicate that two goods are frequently bought
together, node features are bag-of-words encoded prod-
uct reviews, and class labels are given by the product
category.

2) Implementation Procedures: Both ITR and RITR are
implemented with the PyTorch platform. We evaluate the
effectiveness of two proposed methods through a two-step
learning procedure. First, we train an unsupervised framework
to learn representations and complete absent information for
at least 600 iterations. Following SAT [14], we regard the
profiling learning as a pretext task and adopt Recall@K
and NDCG@K as metrics to evaluate the quality of rebuilt
attributes. To alleviate the overfitting problem, we perform
an early stop strategy when the loss value reaches a plateau.
Second, for the node classification task, we feed the rebuilt
attribute matrix into a graph classifier, optimize it with fivefold
validation ten times, and report the average accuracy (ACC)
performance.

3) Training Settings: In the attribute-missing case,
we record the performance of all the methods directly
according to this article of SAT [14] except for GINN [10],
GCNMF [11], and SVGA [43]. In the hybrid-absent case,
we run the released source code of all the compared methods
by following the settings of the corresponding literature
and report their results. For our proposed ITR and RITR,
we strictly follow the criterion of data splits as was done in
SAT, including the split ratio of attribute-complete/missing
samples and the split ratio of train/test sets. Specifically, the
following conditions hold.

1) In the profiling task, we randomly sample 40% nodes
with complete attributes as the training set and man-
ually mask all the attributes of the rest of 10%
and 50% nodes (i.e., attribute-missing samples) as the
validation set and the test set, respectively. Besides,
when attribute-incomplete and attribute-missing sam-
ples exist simultaneously within a graph, we randomly
mask 60% attributes of each attribute-complete sample
(i.e., the training set) before network learning. We use
a four-layer graph autoencoder framework and update
its parameters with the Adam optimization algorithm.
During the training phase, we transfer all the samples
into ITR and RITR to complete absent attributes by
merely reconstructing the available ones. After training,
we rebuild the attribute matrix over the well-trained
model via forwarding propagation.

2) In the node classification task, we randomly split the
rebuilt attributes into 80% and 20% for training and
testing, respectively. We train the classifier with fivefold
validation for 1000 iterations and repeat the experiments
ten times. According to the results of parameter sensitiv-
ity testing, we fix two balanced hyperparameters α and β

to 10. Moreover, the learning rate, the latent dimension,
the dropout rate, and the weight decay are set to 1e−3,
64, 0.5, and 5e−4, respectively. Note that we do not
carefully tune these parameters for ease of training.

4) Compared Methods: We compare RITR with 15 exist-
ing baseline methods for feature estimation on both
the attribute-missing and hybrid-absent graphs. Specifically,
NeighAggre (NAS’ 08) [47] is a classical profiling method.
VAE (NeurIPS’ 16) [48] is a well-known autoencoder method.
GCN (ICLR’ 17) [49], GraphSage (NeurIPS’ 17) [50], and
GAT (ICLR’ 18) [51] are three typical GNNs. GraphRNA
(KDD’ 19) [52] and ARWMF (NeurIPS’ 19) [53] are rep-
resentatives of attributed random-walk-based methods. Hers
(AAAI’ 19) [54] is a cold-start recommendation method.
DCLN (TNNLS’ 23) [55] and HSHSM (TNNLS’ 23) [56]
are two advanced self-supervised graph representation learning
methods. SAT (TPAMI’ 22) [14] is the first attribute-missing
graph imputation network. SVGA (KDD’ 22) [43] and ITR
(IJCAI’ 22) [15] are two most advanced attribute-missing
graph autoencoders. GINN (NN’ 20) [10] and GCNMF [10]
(FGCS’ 21) [11] are two state-of-the-art attribute-incomplete
graph machine learning methods.

B. Attribute-Missing Scenario
1) Performance Comparison: As shown in Table IV,

we report the profiling performance of all the methods men-
tioned above. This table shows that ITR and RITR outperform
all the compared baseline methods in terms of six metrics on
four datasets. Specifically, the following conditions hold.

1) We first compare NeighAggre and VAE with our
methods. Instead of merely exploiting the structure or
attribute information for data imputation, our methods
have two-source information sufficiently negotiate with
each other, thus consistently exceeding NeighAggre and
VAE by a large margin.

2) ITR and RITR show superior performance against GCN,
GraphSage, and GAT, all of which have demonstrated
strong representation learning capability in handling
attribute-complete graphs. However, the results imply
that these methods are not suitable to solve the attribute-
missing problem.

3) For the two strongest attribute-missing graph machine
learning methods (i.e., SVGA and SAT), RITR
outperforms them by 1.81%/3.40%, 1.23%/4.75%,
0.79%/2.20%, and 0.97%/1.13% in terms of NDCG@50
metric on four datasets, respectively. This is because
these baselines heavily rely on predefined assumptions
that may not always hold in real-world graphs for
data imputation, while RITR does not make any prior
distribution assumption so that it can flexibly and effec-
tively make full use of visible information for feature
completion.
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TABLE IV
PROFILING PERFORMANCE COMPARISON IN THE ATTRIBUTE-MISSING CIRCUMSTANCE. THE ATTRIBUTE-MISSING RATIO IS SET TO 60%.

THE BOLDFACE AND UNDERLINE VALUES INDICATE THE BEST AND THE SUBOPTIMAL RESULTS (%), RESPECTIVELY

TABLE V
NODE CLASSIFICATION PERFORMANCE COMPARISON. BOTH ATTRIBUTE-INCOMPLETE AND ATTRIBUTE-MISSING RATIOS ARE SET TO 60%.

THE BOLDFACE AND UNDERLINE VALUES INDICATE THE BEST AND THE SUBOPTIMAL RESULTS (%), RESPECTIVELY

4) RITR achieves better performance than ITR on all the
datasets. The superior results of RITR over the state-
of-the-art method further verify the effectiveness of
our improved framework for handling attribute-missing
graphs.

Moreover, we report the node classification performance
of ten methods in Table V. “X” or “X+A” indicates that
the classifier receives the attribute matrix or attribute and
adjacency matrices as input in the node classification task.
Note that here we only take the attribute-missing scenario
into consideration. From these results, we can see that the
following conditions hold.

1) The classification results of GINN and GCNMF are
not comparable to those of our two methods. ITR and
RITR achieve at least 15.26%/15.51%, 4.69%/5.61%,
6.38%/7.22%, and 4.08%/4.45 accuracy increment. This
indicates that these attribute-incomplete methods fall
into inaccurate data imputation with extremely lim-
ited observations so that they cannot learn effective
representations.

2) Taking the performance of “X” for instance, ITR and
RITR gain 4.99%/5.20%, 7.05%/7.37%, 9.78%/11.18%,
and 3.13%/3.65% performance enhancement over the
state-of-the-art SAT method.

Similar observations can be obtained among SVGA, ITR,
and RITR. These benefits can be attributed to the following
merits: 1) different from SVGA and SAT, our proposed graph
imputation networks avoid the reliance on any prior distribu-
tion assumption for missing attribute completion, so that they
can facilitate the structure-attribute negotiation more flexibly
and comprehensively and 2) the trustworthy visible attribute
information and structure information can be used unitedly by
ITR and RITR for data imputation instead of being treated
separately. The above experimental results well demonstrate
the superiority of ITR and RITR in the attribute-missing
scenario.

2) Effect of Two Schemes in ITR Criterion: To verify the
benefit of the initializing-then-refining imputation criterion,
we conduct ablation studies on four datasets to compare
ITR and two ITR variants, each of which has one of the
critical components removed. From the results in Fig. 3,
we observe that the accuracy of ITR on four datasets would
degrade without one of the key components. Specifically, for
the “X” task, ITR exceeds ITR w/o IR by 2.54%, 1.53%,
2.24%, and 1.64% accuracy increment, and ITR w/o ASU
by 0.69%, 0.30%, 0.98%, and 0.55% accuracy increment on
Cora, Citeseer, Amac, and Amap, respectively. We find that the
IR scheme plays a more important role than the information
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Fig. 3. Effect of the IR and ASU schemes for node classification. ITR w/o
IR and ITR w/o ASU indicate the method with IR and ASU being masked,
respectively.

Fig. 4. MSE comparison of ITR and an ITR variant. ITR w/o IR denotes
the ITR without IR scheme. The X - and Y -axis refer to the range of MSE
and the sample size, respectively.

refining scheme. To illustrate this point visually, we present the
MSE comparison of ITR and ITR w/o IR at the last training
iteration. As seen in Fig. 4, the method with the IR scheme
achieves a better convergence than ITR w/o IR. This indicates
that our IR operation can effectively prohibit inaccurate infor-
mation from being propagated, so the model can learn reliable
representations for high-quality missing attribute restoration.
All the above observations demonstrate the effectiveness of
our proposed ITR imputation criterion, which can enable the
structure-attribute information to sufficiently negotiate with
each other for more accurate data imputation.

C. Hybrid-Absent Scenario

1) Performance Comparison: In this section, we further
investigate the performance of our proposed methods and
study a more challenging hybrid-absent problem, i.e., both
attribute-missing and attribute-incomplete samples exist simul-
taneously within a graph. “X” or “X+A” indicates that
the classifier receives the attribute matrix or attribute and
adjacency matrices as input in the node classification task.
To evaluate the quality of the rebuilt attribute matrix, we take
eight methods (i.e., GCN, GAT, DCLN, HCHSM, GINN,
GCNMF, SVGA, and SAT) as baselines and report the classifi-
cation accuracy on four datasets. From these results in Table V,
we can find that the following conditions hold.

1) In the “X” node classification task, although ITR out-
performs all the baseline methods and achieves highly

competitive results, it suffers from a significant average
performance degradation of 4.37% in the hybrid-absent
scenario compared with the attribute-missing scenario.
This is because ITR conducts sample embedding over
attribute-incomplete samples directly so that amounts
of error information have diffused through the net-
work. As a result, the resultant representations are
inaccurate and can hardly provide the attribute-missing
samples with discriminative enough information for fea-
ture completion.

2) Taking the “X” node classification task in the hybrid-
absent scenario for example, RITR achieves the
best performance against all the compared base-
lines. Specifically, RITR improves SVGA and SAT
by 10.20%/5.58%, 9.24%/9.60%, 18.48%/13.98%, and
8.00%/5.96% accuracy increment on all the datasets.
The observations of other cases are similar.

These results once again verify that when both the
attribute-incomplete and attribute-missing samples exist simul-
taneously, the feature completion mechanisms of the existing
baseline methods have an adverse effect on the quality of
recovered attributes due to the propagation of incorrect infor-
mation. In contrast, RITR effectively alleviates this adverse
influence by introducing two personalized feature completion
mechanisms based on the initializing-then-refining imputation
criterion.

2) Effect of Each Mechanism of RITR: Here we conduct
an ablation study to validate the effectiveness of our proposed
attribute-incomplete and attribute-missing imputation mecha-
nisms. Table VI reports the Recall and NDCG performance of
three methods, including RITR w/o STC, RITR w/o ITR, and
RITR. Specially, RITR w/o STC or RITR w/o ITR indicates
that the method removes the STC mechanism or the ITR
mechanism. Note that here we set both the attribute-missing
and incomplete ratios as 60%. Table VI reports the results of
RITR and its two variants, from which we can see that the
following conditions hold.

1) RITR consistently improves RITR w/o STC on all the
datasets. Taking the results on Cora for instance, RITR
gains 0.73%, 1.02%, 1.52%, 1.06%, 1.22%, and 1.45%
increment in terms of Recall and NDCG, demon-
strating the effectiveness of leveraging the intimate
structure-attribute relationship to guide the imputation
of incomplete attributes. Similar observations can be
concluded from the results on other datasets.

2) RITR significantly outperforms RITR w/o ITR and has
performance enhancements of 4.73%, 3.97%, 2.80%,
and 2.54% over it in terms of Recall@50 on four
datasets, respectively. These results imply the impor-
tance of an effective imputation strategy in which we
use the most trustworthy visible information to imple-
ment the missing attribute completion. In summary, this
ablation study clearly validates that each mechanism can
contribute to the overall performance of RITR.

3) Analysis of the AIR: To further investigate the superiority
of RITR, it is necessary to show whether the proposed RITR
can still achieve effective feature completion when less visible
attribute information is available. To this end, we make a
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TABLE VI
ABLATION STUDY ON THE EFFECTIVENESS OF TWO MECHANISMS OF RITR. RITR W/O STC AND RITR W/O ITR INDICATE THAT THE METHOD
WITHOUT THE STC MECHANISM AND THE ITR MECHANISM, RESPECTIVELY. BOTH ATTRIBUTE-INCOMPLETE AND ATTRIBUTE-MISSING RATIOS

ARE SET TO 60%. THE BOLDFACE AND UNDERLINE VALUES INDICATE THE BEST AND THE SUBOPTIMAL RESULTS (%), RESPECTIVELY

TABLE VII
PERFORMANCE COMPARISON BETWEEN SAT AND OUR PROPOSED RITR. WE FIX THE ATTRIBUTE-MISSING RATIO AS 60%

AND VARY THE AIR FROM 10% TO 70%. THE BOLDFACE VALUES INDICATE THE BEST RESULTS (%)

performance comparison between SAT and RITR by varying
the attribute-incomplete ratio (AIR) from 10% to 70% and
fixing the attribute-missing ratio as 60%. From the results
in Table VII, several observations can be summarized as
follows.

1) RITR consistently performs better than SAT in all the
situations on four datasets. For example, RITR outper-
forms SAT by 2.42%, 2.25%, 1.85%, 1.84%, 1.83%,
1.94%, and 1.51% in terms of Recall@10 when the
AIR varies from 10% to 70% on Citeseer. The observa-
tions of other metrics and datasets are similar. This is
because the SAT method cannot implement an effective
latent distribution matching between the embeddings of
incomplete node attributes and graph structure. Nat-
urally, the resultant misleading information poses a

negative impact on data imputation and feature comple-
tion, resulting in suboptimal representations. RITR can
effectively model hybrid-absent graphs and alleviate the
diffusion of inaccurate information under the guidance
of initializing-then-refining imputation criterion.

2) Taking the results of Recall@10/NDCG@10 on Amac
and Amap for example, RITR with 70% incomplete
attributes can still achieve better performance than SAT
with 10% ones. These results illustrate that RITR can
still achieve high-quality data imputation and feature
completion with limited observed signals. Overall, all
the above results solidly demonstrate the superiority and
robustness of RITR.

4) Hyperparameter Analysis: As seen in (13), RITR intro-
duces two hyperparameters to balance the importance of
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Fig. 5. Sensitivity analysis of RITR with the variation in two hyperparameters. Both the attribute-incomplete and attribute-missing ratios are set to 60%.

Fig. 6. Illustration of method convergence and performance variation in RITR. X -axis, left Y -axis, and right Y -axis refer to the iteration number, the final
objective error, and the Recall@10 performance, respectively. Both the attribute-incomplete and attribute-missing ratios are set to 60%.

different objectives. To show their influence in-depth, we con-
duct an experiment to investigate the effect of α and β.
Note that we first set one to a certain value and then tune
the other carefully. Fig. 5 reports the Recall and NDCG
performance variation in RITR on Cora and Citeseer when
α and β vary from 1 to 20 with a step size of 5. From
these subfigures, we can observe that the following conditions
hold.

1) Tuning both α and β would cause performance variation
and the model performance is more stable in the range
of [5, 15], suggesting that searching α and β values
from a reasonable hyperparameter region could benefit
the model performance.

2) For a certain α value, the performance shows a trend of
first rising and then dropping slightly with the variation
in β. This indicates that RITR needs a proper coeffi-
cient to guarantee the structure-attribute consistency for
improving the quality of feature completion. As shown,
the performance of the model with a certain β value has
similar trends when we change the α value.

3) RITR tends to perform well by setting α and β to
10 according to the results of all the datasets.

5) Convergence and Performance Variation: To illustrate
the convergence of the proposed RITR, we record the profiling
performance reflected by the Recall@10 metric and plot the
objective error of RITR with iterations on four datasets. From
these subfigures illustrated in Fig. 6, we can observe that:
1) the Recall@10 metric of RITR first gradually increases to
a plateau with an obvious tendency and then keeps stable with
a wide range of iterations and 2) RITR can converge within
1000 epochs on four datasets. These results clearly verify the
good convergence property of our proposed method and reveal
the effectiveness of the learning procedure.

TABLE VIII
PERFORMANCE COMPARISON ON LARGE-SCALE DATASETS. “AM”

REFERS TO THE ATTRIBUTE-MISSING SCENARIO. “HA” REFERS
TO THE HYBRID-ABSENT SCENARIO. THE BOLDFACE AND

UNDERLINE VALUES INDICATE THE BEST AND THE
SUBOPTIMAL RESULTS (%), RESPECTIVELY

D. Performance Comparison on Larger Graphs

To evaluate the performance of RITR on larger graphs,
we compare it with six methods on two large-scale datasets,
i.e., Ogbn-A (with 169,343 nodes and 1,166,243 edges) and
Ogbn-Ps (with 2,449,029 nodes and 61,859,140 edges). Both
the attribute-incomplete and attribute-missing ratios are set
to 60%. For a fair comparison, all the compared methods
are evaluated on the same device and under identical con-
figuration settings. To make the data preprocessing fit into
the CPU memory, we adopt the subgraph sampling strategy
to pretrain the model. As seen in Table VIII, the proposed
ITR and RITR consistently outperform three classical GNNs
and other advanced attribute-missing graph machine learning
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methods on these larger datasets, once again demonstrating
the effectiveness and superiority of the proposed methods.

V. CONCLUSION AND FUTURE WORK

Hybrid-absent graphs are ubiquitous in practical appli-
cations. However, the corresponding learning problem that
significantly influences the performance of the existing graph
machine learning methods is still left underexplored. We first
propose ITR specifically designed for the attribute-missing
scenario. ITR can facilitate the effective negotiation between
attribute and structure information, thereby enabling accurate
reconstruction of missing values. We further improve ITR and
design a variant called RITR to handle hybrid-absent graphs,
which can effectively leverage the intimate structure-attribute
relationship to guide the imputation of incomplete attributes
and use the most trustworthy visible information to implement
the missing attribute completion. Extensive experiments on
six benchmark datasets have been conducted to compare
two proposed methods with the state-of-the-art competitors.
These results have solidly demonstrated the superiority and
robustness of ITR and RITR on both the profiling and node
classification tasks. However, there are still some limitations in
the existing attribute-missing or hybrid-absent graph machine
learning methods that have not been thoroughly addressed. For
instance, the time complexities of most methods are O(N 2),
making them hard to be deployed to various large-scale
graph-oriented applications. Future work may extend the
proposed RITR to a scalable version with linear scalability
[i.e., O(B Nd)] via a mini-batch design. Moreover, in the cur-
rent version, RITR conducts the structure-attribute information
interaction and imputation via a simple concatenation. In the
future, how to develop a more mathematical hybrid-absent
graph machine learning approach to theoretically explain the
structure-attribute relationship is another interesting direction.
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